Mailing list

Subscribe to the UltraSuite mailing list to get updates from the UltraSuite repository and to send and receive messages from other UltraSuite users.

The UltraSuite mailing list can be found at:

To post to this list (subscribers only), send your email to

If you ever want to unsubscribe or change your options (e.g. switch to or from digest mode, change your password, etc.), visit your subscription page at:

You can also make such adjustments via email by sending a message to:

with the word ‘help’ in the subject or body (don’t include the quotes), and you will get back a message with instructions.


This is a list of work describing, using, or referencing the data available in the Ultrasuite repository.

Database papers

  • Ribeiro, M. S., Sanger, J., Zhang, J.-X., Eshky, A., Wrench, A., Richmond, K.,& Renals, S. (2021). TaL: a synchronised multi-speaker corpus of ultrasound tongue imaging, audio, and lip videos. Proceedings of the IEEE Workshop on Spoken Language Technology (SLT). Shenzhen, China.[Paper]
  • Eshky, A., Ribeiro, M. S., Cleland, J., Richmond, K., Roxburgh, Z., Scobbie, J., & Wrench, A. (2018) Ultrasuite: A repository of ultrasound and acoustic data from child speech therapy sessions. Proceedings of INTERSPEECH. Hyderabad, India. [Paper]


  • Csapó, T. G., & Xu, K. (2020). Quantification of Transducer Misalignment in Ultrasound Tongue Imaging. Proc. Interspeech.[Paper] [Code]
  • Zhu, J., Styler, W., & Calloway, I. (2020) MTracker-a CNN-based tool for automatic tracking of tongue contours. UltraFest, Indiana, USA. [Paper] [Code]
  • Zhu, J., Styler, W., & Calloway, I. (2019). A CNN-based tool for automatic tongue contour tracking in ultrasound images. arXiv preprint arXiv:1907.10210. [Paper] [Code]
  • Eshky, A., Ribeiro, M. S., Richmond, K., & Renals, S. (2019). Synchronising audio and ultrasound by learning cross-modal embeddings. Proc. Interspeech. Graz, Austria. [Paper] [Code].
  • Ribeiro, M. S., Eshky, A., Richmond, K., & Renals, S. (2019). Ultrasound tongue imaging for diarization and alignment of child speech therapy sessions. Proc. Interspeech. Graz, Austria. [Paper] [Code]
  • Ribeiro, M. S., Eshky, A., Richmond, K., & Renals, S. (2019). Speaker-independent classification of phonetic segments from raw ultrasound in child speech. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1328-1332). [Paper].
  • Shahin, M., Ahmed, B., Smith, D. V., Duenser, A., & Epps, J. (2019). Automatic Screening of Children with Speech Sound Disorders Using Paralinguistic Features. In IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP) (pp. 1-5).[Paper (not open access)].
  • Shahin, M., Zafar, U., & Ahmed, B. (2019). The Automatic Detection of Speech Disorders in Children: Challenges, Opportunities, and Preliminary Results. IEEE Journal of Selected Topics in Signal Processing, 14(2), 400-412. [Paper (not open access)].
  • Ribeiro, M. S., Eshky, A., Richmond, K., & Renals, S. (2018). Towards robust word alignment of child speech therapy sessions. UK Speech, Dublin, Ireland. [Abstract] [Poster]


  • Mozaffari, M. H., Sankoff, D., & Lee, W. S. (2019). Ultrasound tongue contour extraction using BowNet network: A deep learning approach. In Proceedings of Meetings on Acoustics 178, ASA (Vol. 39, No. 1, p. 020001). Acoustical Society of America. [Paper]
  • Mozaffari, M. H., Ratul, M., Rab, A., & Lee, W. S. (2019). Irisnet: Deep learning for automatic and real-time tongue contour tracking in ultrasound video data using peripheral vision. arXiv preprint arXiv:1911.03972.
  • Hewer, A., Steiner, I., & Richmond, K. (2019). Analysis of coarticulation using EMA data with a statistical shape space model of the tongue. Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2019, 296-303. [Paper].
  • Scobbie, J. M., & Ma, J. (2019). Say again? Individual articulatory strategies for producing a clearly-spoken minimal pair wordlist. Proc. 19th ICPhS. [Paper]

Publications list last update: November 2020