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ABSTRACT

We present the Tongue and Lips corpus (TaL), a multi-speaker cor-
pus of audio, ultrasound tongue imaging, and lip videos. TaL con-
sists of two parts: TaL1 is a set of six recording sessions of one
professional voice talent, a male native speaker of English; TaL80
is a set of recording sessions of 81 native speakers of English with-
out voice talent experience. Overall, the corpus contains 24 hours of
parallel ultrasound, video, and audio data, of which approximately
13.5 hours are speech. This paper describes the corpus and presents
benchmark results for the tasks of speech recognition, speech syn-
thesis (articulatory-to-acoustic mapping), and automatic synchroni-
sation of ultrasound to audio. The TaL corpus is publicly available
under the CC BY-NC 4.0 license.

Index Terms— Ultrasound tongue imaging, video lip imaging,
silent speech, articulography, corpora

1. INTRODUCTION

Measuring the position of the articulators during the speech pro-
duction process is relevant to disciplines such as linguistics, speech
processing, speech pathology, and anatomy. Articulatory movement
can be captured [1] using magnetic articulography techniques, such
as electromagnetic articulography (EMA) or permanent-magnetic
articulography (PMA); palatography techniques, such as elec-
tropalatography or optopalatography; or imaging techniques, such
as video imaging, magnetic resonance imaging (MRI) or ultrasound
tongue imaging (UTI).

Video is the cheapest and most convenient imaging method to
acquire articulatory data and is useful for studies focusing on the
dynamics of those articulators. Its main limitation is its inability to
capture anything beyond extraoral articulators, such as the lips and
jaw. To provide complementary data, intraoral articulators can be
monitored using medical imaging techniques such as MRI [2] and
UTI [3]. Although MRI captures high-quality images, it suffers from
a variety of disadvantages [4]: it is expensive and not easily acces-
sible, and suffers from loud background noise, a supine recording
position, and low temporal resolution. Ultrasound tongue imaging,
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on the other hand, is portable, non-invasive, clinically safe, and rela-
tively cheap. UTI uses diagnostic ultrasound operating in B-mode to
visualize the tongue surface during speech production at high frame
rates. There are, however, some challenges associated with ultra-
sound images of the tongue [5]. They may be noisy and image res-
olution may not be ideal, as they are susceptible to unrelated high-
contrast edges, speckle noise, or interruptions of the tongue surface.
Furthermore, image quality may be affected by speaker characteris-
tics such as age or physiology, or by probe placement.

Ultrasound tongue imaging has been used in various applica-
tions, including speech therapy [6, 7, 8], language learning [9, 10],
phonetics studies [4], and the development of silent speech inter-
faces [11]. Previous work in the context of speech therapy used
ultrasound data to develop tongue contour extractors [12], animate
a tongue model [13], and automatically synchronise and process
speech therapy recordings [14, 15]. Additionally, speech recogni-
tion [16, 17] and speech synthesis [18, 19] from ultrasound images
have been used in silent speech interfaces to restore spoken com-
munication for users with voice impairments or to allow silent com-
munication in situations where audible speech is undesirable. Ul-
trasound data has also been used to develop models for articulatory-
to-acoustic or acoustic-to-articulatory mapping [20, 21]. Lip videos
have been used for research on multimodal speech perception [22],
audio-visual synchronisation [23], automatic lip reading [24], audio-
visual speech recognition [25], and speech reconstruction from silent
videos [26].

There are relatively few publicly available corpora of ultrasound
tongue images. The Silent Speech Challenge dataset [27] consists
of approximately 2500 utterances of ultrasound and video images
from a single native English speaker. The UltraSuite repository [28]
contains ultrasound and audio data of 58 typically developing chil-
dren and 28 children with speech sound disorders in the context of
speech therapy. Because video imaging is easier to acquire, there
is a much larger selection of audio-visual datasets of lip videos (see
[24, 29] for recent surveys). Earlier corpora were concerned with
restricted-vocabulary tasks, such as the recognition of the alphabet
[30], isolated digits [31], or sentences with limited vocabulary [32].
Recent work, however, is based on more comprehensive audio-visual
datasets containing several hundred hours of speech and thousands
of speakers [33, 34].

This paper presents the Tongue and Lips Corpus (TaL), which
contains synchronised imaging data of extraoral (lips) and intraoral
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Table 1. TaL corpus at a glance. Gender, accent, and age are self-
reported. Accent is categorised here in terms of English (eng), Scot-
tish (sco), or other.

TaL1 TaL80

Number of speakers 1 81
Gender (male/female) 1/0 36/45
Accent (eng/sco/other) 1/0/0 40/36/5
Age (mean/std) 61/- 29.4/11.3
Utterances per session (mean/std) 263/14 205/25
Total number of utterances 1582 16639

(tongue) articulators from 82 native speakers of English. Section 2
describes the data collection and data post-processing steps of the
TaL corpus. Section 3 introduces a set of benchmark experiments
for automatic speech recognition, speech synthesis, and automatic
synchronisation of ultrasound and audio. We conclude in Section 4
with an analysis of speaker performance across tasks and systems.

2. THE TAL CORPUS

The TaL corpus (Table 1) comprises TaL1, a set of six recording ses-
sions of one professional voice talent, a male native speaker of En-
glish; and TaL80, a set of recording sessions of 81 native speakers
of English, without voice talent experience. All recording sessions
took place between October 2019 and March 2020. Sessions with
the experienced voice talent were approximately 120 minutes in du-
ration, and sessions with the remaining speakers were approximately
80 minutes.

Each participant was fitted with the UltraFit stabilising helmet
[35], which held the video camera and the ultrasound probe. Data
was recorded using the Articulate Assistant Advanced (AAA) soft-
ware [36]. Ultrasound was recorded using Articulate Instruments’
Micro system at ∼80fps with a 92◦ field of view. A single B-Mode
ultrasound frame has 842 echo returns for each of 64 scan lines,
giving a 64 × 842 “raw” ultrasound frame that captures a midsagit-
tal view of the tongue. Video images of the lips were recorded at
∼60fps (greyscale interlaced) and synchronised with audio using
Articulate Instruments’ SynchBrightUp unit [37]. Participants were
seated in a hemi-anechoic chamber and audio was captured with a
Sennheiser HKH 800 p48 microphone with a 48KHz sampling fre-
quency at 16 bit.

During data collection there was no attempt to normalise the
position of the ultrasound probe or video camera across recording
sessions. Instead, we attempted to position the ultrasound probe in-
dividually such that the best possible image was captured for each
speaker. Similarly, the video camera was positioned such that the
entirety of the lips was visible on screen. This is a similar process to
what we might find in use cases of this technology, such as speech
therapy [6]. There were, however, some challenges during data col-
lection, as participants often moved when speaking or the stabilising
helmet shifted. Whenever there was a substantial degradation in im-
age quality, the equipment was manually adjusted, and the partici-
pants were asked to read a set of calibration utterances.

Recording prompts were extracted from a variety of sources:
the accent identification paragraph [38], the Rainbow Passage [39],
the Harvard sentences [40], the TIMIT corpus [41], the VCTK
corpus [42], and the Librispeech corpus [43]. All prompts were
spell-checked and adjusted for British English spelling. Table 2
shows a summary of the recording protocol used for each speaker in

Table 2. Recording protocol for TaL80. “Type” indicates speech
type (read or silent speech). “Shared” indicates that the prompts
were read by all speakers in TaL80. The last row does not have a
defined number of prompts, as participants read as many as possible
until the end of the session.

Prompts Type Shared Count

Swallow - Yes 1
Calibration Read Yes 2
Rainbow, Accent Read Yes 24
Calibration Silent Yes 2
Rainbow (partial) Silent Yes 6
Harvard Silent No 9
Harvard Read No 9
Spontaneous - No 1
TIMIT, VCTK, Librispeech Read No -

TaL80. Participants were asked to swallow and to read two calibra-
tion sentences at the beginning and end of each recording session,
and before and after any breaks. The protocol includes a mixture
of prompts read by all speakers and prompts read by each speaker.
Some prompts were read silently, audibly, or both. Additionally,
each participant was asked to speak unprompted for 30-60 seconds.
A list of suggested conversation topics was available, although
participants were allowed to choose any topic of their preference.
Each TaL1 session follows a similar protocol, with the addition of
whispered speech utterances.

Using the AAA software, we synchronised the video and ultra-
sound data to the audio stream. During the synchronisation process,
the video stream was deinterlaced. We then exported all recorded
data from the AAA software. We normalised waveform levels using
the tools available in [44]. Using ffmpeg, the video data was scaled
to 240 × 320 pixels and encoded with libx264 using yuv420p pixel
format and a bit rate of 1 Mbps. Due to a configuration error, the
synchronisation signal was corrupted for the first recording session
of TaL1 (day1). For this reason, video synchronisation is not avail-
able for this session.

For each speaker, utterances were sorted by recording date-time
and indexed from 001. Each filename contains an additional tag,
denoting its prompt type. The tag swa is used for swallows, cal
for calibration utterances, spo for spontaneous speech, sil for silent
speech, and aud for audible read speech. The marker x was used
with audible and silent tags to indicate cross-prompts (repeated by
all speakers). The absence of this marker indicates that the prompt is
unique to the current speaker. The TaL1 data contains the additional
whi tag to indicate whispered speech. Cross-prompt tags in this data
indicate prompts repeated across sessions. Furthermore, each utter-
ance consists of five core data types identified by file extension:

1. The prompt file is identified by extension .txt and it includes
the prompt text read by the speaker, and the date and time of
the recording.

2. The waveform, identified by the file extension .wav, is a
single-channel RIFF wave file, sampled at 48 KHz with a
bit-depth of 16-bit.

3. The synchronization signal is stored identically to the
speech waveform, but is identified by the file extension .sync.
This waveform contains the audio pulses used to synchronise
the video and the ultrasound stream.



Table 3. Amount of data for the TaL corpus by prompt type, com-
puted over parallel data streams (audio, video, ultrasound). The
speech columns estimate data after Voice Activity Detection. All es-
timates are given in minutes, except for the last row, which is given
in hours. Shared data (denoted by x in the tag identifier) means that
the same set of prompts are read by all speakers. For TaL1, x is
applied across recording sessions.

Prompt type Tag TaL1 TaL80

speech total speech total

Read aud 53.26 88.93 501.83 829.45
Silent sil 0.00 6.31 0.00 62.47
Whispered whi 2.98 6.02 - -
Read (shared) xaud 4.04 5.70 162.18 218.13
Silent (shared) xsil 0.00 6.37 0.00 78.19
Whispered (shared) xwhi 2.62 3.83 - -
Spontaneous spo 3.68 4.74 46.50 56.24
Calibration cal 2.98 4.60 32.60 48.90

Total - 1.16 hrs 2.14 hrs 12.39 hrs 21.90 hrs

4. The ultrasound data is stored across two files. Raw ultra-
sound data is identified by the file extension .ult, while the
extension .param is a text file containing ultrasound metadata
(e.g. frames per second, synchronization offset, etc.).

5. The video data is identified by the file extension .mp4, which
embeds its metadata.

We transcribed all spontaneous speech utterances and included
the text transcription in the corresponding prompt file. Because
spontaneous speech utterances can be long in duration (up to 60
seconds), we manually annotated the boundaries of shorter time
segments (typically 5-10 seconds). This segmentation was added as
an additional data type for each speaker, identified by the file exten-
sion .lab. This additional data type, available only for spontaneous
speech utterances, is a text file with the start and end time in seconds
for each time segment and their respective transcriptions.

The AAA software receives data from each modality separately.
The ultrasound stream begins recording after the video and audio and
normally stops recording after. We release all data streams without
trimming them, as they may be useful for a variety of tasks which
are not dependent on parallel data. Identifying parallel data should
be trivial, given the available metadata for each data stream.

For a summary of the TaL corpus, we refer the reader back to
Table 1. Table 3 includes more a detailed distribution of the amount
of data by prompt. Overall, we have collected roughly 24 hours of
parallel ultrasound, video, and audio, of which approximately 13.5
hours are speech. This was collected for a total of 82 speakers across
87 recording sessions. TaL1 contains roughly 2 hours of data from a
single experienced voice talent across six recording sessions. TaL80
contains almost 22 hours of data from 81 native speakers of English.
Figure 1 shows the distribution of ages for TaL80. There is a slight
bias towards younger speakers, as participants were recruited pri-
marily via University channels. Figure 2 shows sample frames from
twelve speakers available in TaL80.

3. EXPERIMENTS

In this section, we present a set of benchmark experiments for
the TaL corpus, focusing on the available modalities. Section 3.1
presents initial results for automatic speech recognition, Section 3.2
provides results for the articulatory-to-acoustic mapping task, and
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Fig. 1. Age distribution for TaL80.

Section 3.3 presents results for the automatic synchronisation of
ultrasound and audio.

3.1. Speech recognition

This set of experiments provides results for speech recognition us-
ing the three modalities available in the TaL corpus. We further con-
sider these results across two training scenarios: speaker dependent
and speaker independent. For this task, we use only read speech ut-
terances (identified by aud), and discard silent, spontaneous, whis-
pered, and other shared prompts. We expect speech styles to have
different properties in terms of tongue and lip movement, therefore
we focus only on read speech.

For the speaker dependent scenario, we conduct our experi-
ments with the TaL1 dataset. We discard day1, for which video syn-
chronisation is not available. The remaining sessions, days 2-6, are
evaluated using cross-validation, leaving one recording session out
for testing. We aggregate results by computing WER on the total
number of errors and words rather than averaging WER across the
5 folds. For the speaker independent scenario, we train models on
speakers 11-81 from the TaL80 dataset. We discard from the training
set all prompts that co-occur with the TaL1 dataset. We save the first
10 speakers for testing, as these have the biggest prompt overlap with
TaL1. Days 2-6 from TaL1 are used as test set, which is identical to
the cross-validation setup for the speaker dependent system.

Feature extraction. During data preparation, calibration utter-
ances are used to identify breaks in the recording session or adjust-
ments to the equipment. This may indicate different image config-
urations, so we define a “speaker” to be any set of utterances with-
out any breaks. This arrangement allow us to do speaker adaptive
training on a speaker dependent scenario. We extract features over
parallel data streams and we trim initial and end silences in the ul-
trasound and video modalities after Voice Activity Detection on the
audio stream. For the audio stream, we extract 13 dimensional Mel
Frequency Cepstral Coefficients (MFCCs) and we append their re-
spective first and second derivatives. For the visual stream, we ap-
ply the 2D Discrete Cosine Transform (DCT) to each ultrasound or
video frame. The upper left submatrix is flattened and used as in-
put. Video frames are resized to 120 × 160 and ultrasound frames
are resized to 64 × 420. Both streams use a submatrix of 12 × 12
coefficients (144 coefficients).



Fig. 2. Sample frames from twelve speakers from the TaL corpus. The top figures show video images of the lips and the bottom figures show
the corresponding ultrasound images of the tongue.

Table 4. Word Error Rate (WER) for speaker dependent and speaker
independent speech recognition on TaL1 and TaL80.

Data
streams

Speaker Dependent Speaker Independent

TaL1 TaL1 TaL80

Audio 3.42% 4.06% 13.00%
Tongue 38.41% 75.34% 83.81%

Lips 51.57% 84.70% 81.52%
Tongue+Lips 25.09% 49.12% 59.20%

Model training. We train the “acoustic” models with the Kaldi
speech recognition toolkit [45]. For these experiments, we initialise
models from a flat start using the corresponding features. After
monophone and triphone training, input features are processed with
Linear Discriminant Analysis (LDA) and a Maximum Likelihood
Linear Transform (MLLT). This is followed by Speaker Adaptive
Training (SAT) with feature-space MLLR (fMLLR) [46]. The align-
ment and HMM models from this stage are then used to train a time-
delay neural network (TDNN, [47]) following Kaldi’s nnet3 recipe.
We decode with a simple in-domain bigram language model trained
on all prompts from the sources described in section 2.

Results and future work. Results are presented in Table 4. As ex-
pected, recognition results from the audio stream outperform those
of the articulatory modalities by a large margin. Although we have
made no attempts to design more complex systems for silent speech
recognition, the high WERs illustrate the difficulty of the problem.
This is particularly noticeable when using data from multiple speak-
ers in a speaker independent system. In all cases, we observe that
the visual data streams complement each other well. The difference
in the TaL1 results across the two scenarios shows that speaker in-
dependent silent speech recognition is a challenging problem. Ad-
ditionally, we observe a large range in the speaker-wise WERs in
the TaL80 test set. Using the Tongue+Lips system, the best speaker

achieves a WER of 32.3% and the worst speaker a WER of 98.3%.
Further work can focus on identifying speakers with poor image
quality and developing methods to improve their results. There are
a number of possibilities that could improve upon these results. For
example, we made no attempt to use the audio stream to initialise
the silent models. Instead of a flat start, we could bootstrap mono-
phone HMMs with audio alignment. Earlier work showed that sub-
stantial improvements can be observed with more complex feature
extraction [17, 48]. The results on the TaL80 corpus are speaker in-
dependent, but they do make some use of data from target speakers
when estimating fMLLR transforms. We observe that using fMLLR
can lead to good improvements. Other forms of speaker adaptation
are likely to be useful. The multi-speaker systems and fine-tuning
results described in the next section further support this idea.

3.2. Speech synthesis

This set of experiments presents results for an articulatory-to-
acoustic conversion model. As in Section 3.1, we show results
in terms of the three modalities available in the TaL corpus. Instead
of a speaker-independent scenario, we focus here on speaker-
dependent and multi-speaker models for speech recovery from
silent modalities. As before, the speaker-dependent model uses days
2-6 from TaL1. In the multi-speaker condition, we use data from
75 speakers in TaL80 and we hold out the rest for additional exper-
iments. For training data, we use all the aud utterances available
for each speaker, of which 10 utterances are randomly held-out for
validation. We use the 24 xaud utterances from each speaker for
testing.

Feature extraction. The video stream is resampled to match
the frame rate of the ultrasound stream using ffmpeg. Each video
frame is then resized to 72 × 136, randomly flipped horizontally,
then cropped to 64 × 128 pixels. Each ultrasound frame is resized
to 64× 128. For acoustic features, we use the STRAIGHT vocoder
[49] to extract 41-dimensional Mel-cepstral coefficients (MCCs) and



Table 5. Model structure for the articulatory-to-acoustic model.

Encoder

3DCNN, k 5× 5× 5, s (1, 2, 2) , c 32→
BN-ReLU-Dropout 0.2→
Maxpooling, k 1× 2× 2, s (1, 2, 2)→
3DCNN, k 5× 5× 5, s (1, 2, 2), c 64→
BN-ReLU-Dropout 0.2→
Maxpooling, k 1× 2× 2, s (1, 2, 2)→
3DCNN, k 5× 3× 3, s (1, 2, 2), c 128→
BN-ReLU-Dropout 0.2→
Flatten→ Fc-512 units→ BN-ReLU-Dropout 0.2

Decoder 2-layer BLSTM, 256 units in each direction→
Fc-43 units

k and s represent kernel size and stride respectively. c repre-
sents the number of output channels. The dimension order is
T (time), H (height), W (width). BN represents batch nor-
malization. Fc represents fully connected layer.

1-dimensional fundamental frequency (F0). Fundamental frequency
is interpolated at the unvoiced frames and converted to log-F0 and a
binary voiced/unvoiced flag. All features are concatenated to form
a 43-dimensional acoustic vector. Acoustic features are normalized
to have zero mean and unit variance for each speaker. In the multi-
speaker model, we additionally use a speaker representation in the
form of x-vectors [50], extracted with the Kaldi toolkit. For wave-
form reconstruction, we use the STRAIGHT vocoder.

Model training. We use an encoder-decoder architecture (Ta-
ble 5). The encoder transforms the tongue or lip frames into 512-
dimensional vectors. The decoder then predicts acoustic features
conditioned on the encoder outputs and speaker x-vectors. When
both tongue and lip videos are used as inputs, we adopt separate en-
coders. The representations from the two encoders are concatenated
and sent to the decoder. For multi-speaker training, the model is first
pre-trained on all 75 training speakers and then fine-tuned separately
on each speaker. We used the Adam optimizer with a learning rates
of 10−3 and 10−4 during pre-training and fine-tuning, respectively.

Results and future work. Results are presented in Table 6. To
evaluate the performance of the model, we report results in terms of
mel-cepstral distortion (MCD). As a proxy measure of intelligibility,
we decode the synthesized samples with an open-source ASR model
based on ESPnet [51] and we report results in terms of WER. We opt
to use this model rather than the audio model described in section 3.1
as it is not trained on audio data from the target speakers. Decoding
the corresponding natural speech with this model achieves a WER of
0.5% and 3.5% for TaL1 and TaL80, respectively. We observe from
Table 6 that the performance of the model using different modalities
is similar to the results reported in Section 3.1. Using ultrasound
tongue images leads to better results than video images of the lips.
The best models use both the ultrasound and video data. As with
speech recognition, the average performance of the multi-speaker
system is worse than that of a speaker-dependent system. We further
provide results for fine-tuning the multi-speaker model on the TaL1
data. This is denoted by TaL80+TaL1 in Table 6. Future work will
evaluate the intelligibility of synthetic speech with a perceptual test.
To this end, a neural vocoder can be used to generate high quality
waveforms. More powerful encoders, such as ResNet [52], can be
used to process the video inputs. As observed in section 3.1, results
vary substantially across speakers. Focusing on identifying speakers
whose converted speech has low intelligibility and optimizing for
their performance could be an interesting future research direction.

Table 6. Mel-Cepstral Distortion (MCD) and Word Error Rate
(WER) for the articulatory-to-acoustic conversion model. In the
dataset column, TaL1 denotes results for a speaker-dependent model,
TaL80 for a multi-speaker model, and TaL1+TaL80 indicates the
multi-speaker model fine-tuned on all available TaL1 data. For
TaL80, we show mean ± standard deviation across all speakers.

Dataset Data
streams MCD (dB) WER (%)

TaL80
Lips 4.09±0.19 96.0±3.8

Tongue 3.35±0.16 56.5±11.0
Tongue+Lips 3.31±0.15 53.5±11.7

TaL1
Lips 3.43 66.3

Tongue 2.99 27.9
Tongue+Lips 2.84 17.2

TaL80+TaL1 Tongue+Lips 2.72 14.0

Table 7. Accuracy of UltraSync, when pre-trained on out-of-domain
child speech therapy data, and when trained on in-domain TaL data.

Prompt type Tag TaL1 TaL80

n accuracy n accuracy

Out-of-domain model

Read aud 384 70.6% 2595 71.6%
Read (shared) xaud 48 79.2% 384 72.9%
Spontaneous spo 2 100% 16 87.5%
Calibration cal 18 77.8% 134 80.6%

All 452 71.9% 3129 72.3%

In-domain model

Read aud 384 98.4% 2595 97.4%
Read (shared) xaud 48 97.9% 384 98.4%
Spontaneous spo 2 100% 16 93.8%
Calibration cal 18 100% 134 98.5%

All 452 98.5% 3129 97.6%

3.3. Automatic Synchronisation

These experiments present results for the automatic synchronisa-
tion of ultrasound and audio. The TaL corpus was synchronised at
recording time using a hardware synchronisation mechanism which
gives the offset between the two signals in milliseconds. We investi-
gate how well we can predict these offsets by exploiting correlations
between the two modalities using the UltraSync architecture [14].

We conduct two experiments using in and out-of-domain data.
For the first experiment, we use the UltraSync model from [14]
which has been trained on out-of-domain child speech therapy
data. In the second experiment, we train the UltraSync model on
in-domain TaL data. We reserve days 2, 3, and 4 from TaL1 for
training, day 5 for validation, and day 1 and 6 for testing. We also
reserve speakers 1-49 from TaL80 for training, 50-65 for validation,
and 66-81 for testing. We pool the training data and train a single
in-domain model from scratch, following the same architecture and
training procedures as [14]. We report all of our results on the same
test subset for comparability.

Data preprocessing. We preprocess the data to match the Ultra-
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Fig. 3. Pearson’s product-moment correlation of speaker-wise re-
sults across system pairs. Each cell in this figure indicates the cor-
relation of speaker performance for two systems. WER denotes re-
sults from speech recognition systems and MDC denotes results for
articulatory-to-acoustic mapping systems.

Sync input size by resampling the audio to 22.05 KHz using scipy
interpolate, resampling the ultrasound to 24fps using skimage trans-
form, and resizing the ultrasound frames to 63× 138 pixels.

Experimental setup. UltraSync requires us to specify the range
of allowable offsets. In a practical scenario, domain knowledge is
utilised to select a suitable candidate list [14]. For these experiments,
we consider the observed minimum and maximum offsets given by
the hardware sync in the TaL corpus and we set the step size to 45ms.
We then calculate the range of allowable offsets as: [min− (step×
10), max + (step × 10)], which renders 25 candidates in total,
roughly equal to the 24 candidates in [14].

Results and future work. For each utterance we calculate the dis-
crepancy: disc = prediction−truth, where truth is the hardware
offset. A predicted offset is correct if the discrepancy falls within the
detectability threshold: −125 < disc <+45 [14]. We report results
on utterances with audible content and exclude silent and whispered
speech in Table 7. The overall out-of-domain model accuracy is
72.2% while the in-domain accuracy is 97.7%, compared to 82.9%
reported by [14]. We attribute the increase in performance to the
higher quality of our data, the absence of multiple speakers in our
recordings, and the presence of linguistic variety in our utterances
compared to child speech therapy data [14]. Future work will ex-
plore synchronising the two visual modalities or all three modalities.

4. DISCUSSION

Experimental results show that results can vary depending on tasks
or articulatory modalities. In this section, we perform an anal-
ysis of speaker performance. We prepare a common evaluation
set of all xaud utterances available in TaL80 (24 per speaker),
which were not seen during training. We collect results sepa-
rately for each speaker using the corresponding speech recognition
and articulatory-to-acoustic mapping systems. We use WER from
the TaL80 speaker-independent system in Section 3.1 and MCD
from the TaL80 multi-speaker system of Section 3.2. Given these
speaker-wise WER/MCD scores, we compute Pearson’s product-
moment correlation across all system pairs (Figure 3). We observe
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Fig. 4. Speaker mean rank for speech recognition and articulatory-
to-acoustic mapping using Tongue-only or Lip-only data for TaL80.
Speaker identifiers denote speaker number, gender, and accent.

that speaker performance is generally more correlated for intra-task
systems than inter-task systems, irrespective of modality used. For
example, considering articulatory-to-acoustic mapping (MCD in
Figure 3), speaker performance correlates well when using different
modalities. That is, speaker-wise MCD results for the systems using
tongue-only and lips-only have medium correlation (r = 0.51). But
when comparing speaker performance across tasks using the same
modality, correlation tends to be lower, either with tongue inputs
(r = 0.34) or lip inputs (r = 0.21). We also observe a very high
correlation for the articulatory-to-acoustic mapping system using
tongue and tongue+lip data (r = 0.98). This suggests that the sys-
tem may not be making the most use of the video data. This could
explain the limited improvements of the tongue+lip system over the
tongue system in Section 3.2 when compared with the corresponding
system in Section 3.1.

Additionally, we compare speaker performance on systems us-
ing only one of the available modalities. To find a comparable score
across both tasks, each speaker score (WER or MCD) is replaced
by their rank order and then averaged across the two tasks. Figure
4 shows speaker mean ranks for systems using only tongue images
or lip images. Although there is low inter-task correlation, Figure
4 identifies speakers that underperfom on both modalities and tasks
(e.g. 09fe, 16fe, 27fs, 12me, and 60ms). Similarly, some speak-
ers perform well across the two data streams and tasks (e.g. 70ms,
48ms, and 22me). On the other hand, speaker 63me, for example,
achieves good score when using ultrasound data, but scores poorly
when using only lip data. This type of analysis can be used in the
future to identify speakers with good-quality imaging data.

5. CONCLUSION

We presented the Tongue and Lips corpus (TaL) and a set of
benchmark experiments for speech recognition, articulatory-to-
acoustic mapping, and automatic synchronisation of ultrasound
and audio. These experiments illustrate the challenge of de-
veloping robust systems that process articulatory imaging data
from multiple speakers. TaL is released under the Creative Com-
mons Attribution-NonCommercial 4.0 Generic (CC BY-NC 4.0)
licence and is distributed via the UltraSuite Repository: https:
//www.ultrax-speech.org/ultrasuite.

https://www.ultrax-speech.org/ultrasuite
https://www.ultrax-speech.org/ultrasuite
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